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PREFACE

Some of the most significant applications of recursive function
theory have been those made to decision problems arfising in other
areas of mathematics. For example, Novikaff and Boene demonstrated

independently that the word problem {or groups 15 trecursively un-

IO} e il > o

solvable. Since about 1950, continuing attempts have been made to

P
*

prove that Hilbert's tenth problem is unsolvable, that {g, that no

algorithm exists for determining whether an arbitrary polynomial

with integer coefficients has a root in integers. In this Memorandum,

which is the result of such an attempt, it is shown that if a certain
single diophantine equation has no non-triviual gsolutions, thea Hilbert's
tenth problem is unsolvable.

The author wishes to acknowledge helpful discussions with Robert
DiPaola, Oliver Gross, Hilary Putnam, Norman Shaplro, and Joel Spencer.

The ideas of Section 3 ave from unpublished joint work with Hilary

Putnam done during the summer of 1962,

Professor Martin Davis, a consultant, is on the faculty of New

York University.
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"This material is referred to as 'Proposition 2" in [4]. As
stated, the "proposition" requires the following correction: Replace

"2 + Jg2" by "ala;(r2 + ds?y."
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SUMMARY

It is shown that if a particular exhibited diophantine equation
has no non-trivial solutions, then Hilbert's tenth problem is recur~
sively unsolvable,

Let H stand for the assertion!

The wquation

9t + 7097 - 7 + 1.5 2 (%)

has no solution in non-negative integers except the trivial u = p = 1,
v =g,

The truth of M must be left open; however, in this study it is
proved that

H implics that there 1s no wuniform algorithm for testing poly-
nomial diophantine equations for solvability in positive integers,
i.e., that Hilbert's tenth problem ia unsolvable.

As will be seen, the methods used in this study yield a result
considerably stronger than tne statement above. These methods can
be readily adapted to obtain various other hypotheses about which
demonstrations can be made similar to that for /. The Memorandum
concludes with a report on numerical calculations (some using the

3

JOSST system) made in a search for counterexamples to H.

+See Chapter 7 of {1}, {3], [4], {5]), and [6].

tJOSS 1s the trademark and service mark of The RAND Corporation
for its computer program and services using that program.
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ONE FQUATION TO RULE THEM ALL

1. INTRODUCTION

At the Internaticnal Congress of Mathematicians held at Paris
in 1900, David Hilbert {8) pos. 2 series of problems that were to
stand as a challeuge to future gencrations of mathematicians, and
that hdave had a profound effect on the subsequent histery of mathe-
matics., Tne tenth problem of this series, which has come to be known
as "Hilbert's tenth problem," 1s one of several remaining Hilbert
problems that have resisted the intense efforts of mathematicians
evervwhere. It reads:

10, Entscheidung der Losbarkeit einer diophantischen

Gleichung.

Eine diophantische Gleichung mit irgendwelchen

Unbekannten und mit ganzen rationalen Zahlkoeffizicnsten

sel vorgelegt; man soll ein Verfahren angeben, nach

welchem sich mittels einer endlichen Anzahl von QOperationen

entscheiden ldsst, ob die Gleichung in ganzen rationalen

Zahlen ldsbar ist,

Given the failure of mathematicians to develop a general theory
of diophantine cquations, the modern theory of recursive functions

1

suggests a '"solution" to Hilbert's tenth problem which is radically

different from any that could have been envisaged in 1900, namely, that

the problem of finding such an algorithm is in a fundamental sense

"
‘The Introduction was prepared by members of The RAND twwporation
staff.

¥ 10, Determining the solvability of a diophantine
equation,

Let a diophantine equation with an arbitrary number
of unknowns and with integer coefficients be given; a
procedure is desired such that by means of a finlte
number of operations it can be declded whether the
equation has a solution in integcrs,
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unsolvable f.e., there s no souch algorithm az s deslved. This
Memorandum proves that if a certain specific diophantine cquation has
ne non-trivial integral solutions, then Hilbert's tenth problem 1s
unsolvable in the above sense.

To place this Meworandum in context, a4 brief review of the previous
work donc toward establishing the unsolvability of the preblem i3 fn
order. Post [10] was the first to formulate Hilhore'n tcuth problem
as a decislon problem of a recursively enumerable set. The author [2]

proved that every recursively enumerable relation can be represented

in the form
$)
\\/ /\\ ﬁ(rl, Tou eees Ty ky y)
u k=0

where U is a diophantine predicate, that is, a polynomial equation pre-
fixed by a block of existential quantifiers. tHence there are recursively
unsolvable problems of this form, and if it were known that the class
of Jdiophantine predicates is closed under bounded universal quantifica-
tion, a proof would follow that Hilbert's tenth problem is unsolvable.

In a paper which has remained basie to later research, Julia
Robinson '11] {nvestigated the relation between diophantine predicates
and predicates of (roughly spcaking, e¢xponential order of growth. This
paper suggested the consideration of the decision problem for exponen-
tial diophantine equations, that is, for those diophantine equations in
which the exponents appearing in polynomilals are treated as variables,
Research on this problem culminated in {3], where it was shown that all

th is interesting that Hilbert ¢mphasized the possibility that,
as with the famous construction problems of Greek mathematics, the

solution to a problem 18 in terms which could net have been imagined
by the proposer of the prohlem.

Y
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recursively enumerable sets are exponential diophantine, and that

- ——— R A

therefore the decision problem for exponential diopbantine equations
{s~-1n a sunse precise to recursive function theorists--of the highest

f ungolvability for decision prot:lems about recursively

o

degres
enumerable sets,

There also stemmed from |11} the following liypethesis, which
has vowne to be known as J.R.: There is a diophantine predicate of
exponential order of growth, in the sense of [11]. It follows from

, [5] that J.R, implies that all recursively enumerable sets are dio-~
phantine and hence that Hilbert's tenth problem {s unsolvable. Most
of the recent work un the problem Lias been devoted to estab'ishing
J.R. This Memorandum falls into this category, since it proves that
if a particular diophantine equation has no non-trivial solutions,

then J.R. holds.

2. SOME PROPERTIES OF SOLUFIONS OF THE PELL EQUATION x° - 7.° =

e

Below, p is always a prime number,

, . . ,
. Lemma L. Phe owucore: D wevimvicqyt iy Tuteomen ool o o ont
Zemna b s o .

xz - 732 = L oam glven (For vov 0) by
.7.'” + "‘,'|7 = (B + 7).
Proof. By Theorem 104 of [9], we have
A
~ o0t
{ J‘”+.-"i7"(Jl +‘J|'”

Moreover, we may calculate el from the fact that N fs the least

2 N
g for which 1 4 7y is a square and o, = ¥! ¢+ 791. This gives o = A

1

- —a—— AT

o, ™ 3,
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Leraa 2, Lo, - 1,
Loerdid £ ( 0! "lﬂ)

) . + 1 : . 2 . 2

Provt. o | T and I ¥, implies | (mn - /yr), 1.e., 4] 1,
e et [}

Lemma 3. Jhe scqueonces x), Y, are both wolutinie of the aceond-
aemna ;

. 8
order ;hj'f'r.‘m?nmf m_";ugtz,an

Un+2 " l6UH+1 - Un :

Proof. Let o = 8 + 3/7, v' = 8 - 3/7. Then, o + 68' = 16,

2 2 n+l +

00' = 1, 8o that 8% - 160 + § = 0. Hence 8 ° - 160 0" = 0.

That {is,

rn+2 + yn+2 7 - 16(xn+

L ¥ Yo Y7y - (x, +y, Ty

Lemma 4. For n odd, z, ig even and Y, 18 odd. For n even, x,
l8 odd and Y, 18 even.

Proof. The result is clear by inspection for n = 0, 1.
It foliows, in general, since Lemma 3 implies that

T 7T, (mod 23}, Yyuo 2 ¥, (mod 2).

2 2
Lemma 5. x, = (xn) + 7(yn) v Yo, = 2y

Proof.
2.+ STz 4y VD)% - (22 + TPy 4 22y VT
am T Yo Ty T ¥y n Y nn '
Lemma 6. Lot now 27 o k, m> 0, Then,

y = 2,y Nz
" Kk O<tem 2%k

Proof., For m = 1, the result 1s given by Lemma 5., Proceeding

by induction (and ysing Lemma 5),




- A el
Yol i m i = 2 Ty 1
2 - ARY Orivm 2 ek
Lemna 7.
.
m+3

Y= 2 A

2 O-1rem 27

Provf. Take & = 1 in Lemma 6.

Lemma 8., 3 | y o,

—— “n

Proof. This 1is true for n = 0, 1, and hence by Lemma 3 must be

true for all n.

Lemma 9. Yy, 4 = (3o + 7yp) (= + 3y;)
Proof .

. - 2 ~

Tokel T Yok 7 S H8 + 3 /7)

2 2
- ((Ik' + 7yk) + Z'rkyf-: /7Y + 3 /T
Hence,
- 3zt 4+ L6x,y, + 2142
Yaker T Tk K T S

= (x4 Ty )@y v 3y,

Lemma 10, (Bxk + 7yk, X, * 3yk) = 1.

Proof. If p | 3xk + 7Hk' r X + Byk, then since 3(xk + Byk)
- (3rk + 7yk) = 2yk, either p = 2 or p | Yy But by Lemma &, Xy, and
Yy have opposite parity, so p ¢ 2. Hence p | .., and therefore

p | Iz, + 3, - 3y, 1, te., | x,, which contradicts Lemma 2.
k k K Pl




3, REPRESENTABLE NUMBERS

A positive integer x will be called repreasentable if therc are

2 2

non-negative integers u, v, such that £ = 4" + 727, As 1is well known,

the product of representable numbers is representable, (Namely, if
t=a%, y=BH amux+p /-7, 8=pr+g /<7, then zy = (aB) - (aB).)

Lemma 11. 27 {8 representable if m > 2,

2 Y3

Ty A R L

m is odd, m 2 2, thenm = 2k + 3, k 2 0, Hence 2" - 22k + 8, which

Pxoof, For m = 2k, k 2 0, we have 2

is the product of representable numbers since 8 = (l)2 + 7 . (1)2.

We shall call an odd prime p potson 1f p = 3, 5, or 6 {mod 7)
and non-poigon 1f p # 1, 2, or 4 (mod 7).* Note that every odd prime
p = 7 is either poison or non-poison, but that 2 1is neither.

The following two lemmas are immediate consejuences of exercises
9 and 10 on page 81 of [7].

Lemma 12. If there ig a poison prime dividing x to an odd power,
then z i1g not represemtable.

Lemma 13. If x i3 odd and is =ct representable, then there i3
a poisor. prime which divides x tc an odd power.

We thus find, recallirg Lemma 8,

Lemna 14. For all m, y /3 is reprcsentable.

Proof. By Lemma 5, x i? 0 < 2 < m ig representable for each %,
By Lemma 11, ZM+3 is reprezentable. The result follows at once from
Letnma 7.

Lemma 15, If n = 2"k, k, m > 0, k i8 odd and yn/3 18 representable,
then yk/3 18 representable.

Proof. Suppose yk/3 were not representable. by Lemmas 4 and 13

"0f course the "non-poison" prime, are just the odd primes which

are quadratic residues mod 7,

o
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there 15 2 peison vrimec p which divices yk/3 to an odd power., Slace
by Lemma 5 each xzi.k’ 0 < ¢t <m is representable, Lemma 12 implies
that p divides each of these numbers to an even (perhaps 0) power.
Moreover p [ 2" and, by Lemma 2, p [ ;. So, by Lemna 6, p divides
yn/3 to an odd power, which by Lemma 12 contradicts the hypothesis.

Lemma 16. If y2k+1/3 ig reprecentable, so are T, + 7(yk/3) and
T + Hyk.

Proof. The result follows at once from Lemmas 8, 9, 10, 13, and
14,

Finally, we obtain:

Thecrem 1. If for some n > 0 not a power of 2, yn/3 v& repre-

sentable, then the system of diophantine equations

¥ eyt a1,

2

X+ 77 = u? s Wt

X+ 9Y = rz + 732
has a non-negative integer so. ~wm for which Y = 0.
Prcof. By Lemmas 15 and 1- , the hypothesis implies there are

representable numbers x, + 7(y,/3), x, + 3y,, k > 0. Setting X =
kT kT Yk 8

X.

o Y= ykIB, we have numbers u, v, r, s with

X+ 7y =+t

X +9Y = rz + 732

Horeover,




2 2 2 s 2
X° - 63y = z - 63(yk/J)
2 2
~ X - 7yk
=1 .

Corcllary. If for some n > O not a power of 2, yn/3 i8 repre-
sentable, then our equation (*) has a non-trivial solution.

Proof. Let X, Y be as in Theorem 1. Then,*

9? + w22 - 102 + 1692
= 9(x% + 16xy + 49/%) - 7(x% + 18xr + 81Y%)
= 2(x% - 63rd)
-20
Combining the Corollary with Lemma l4, we obtain:
Theorem 2., H implies that yn/3 18 repregen.able for n > 0 if
and only if n is a power of 2.
Corollary. K implies that {yzm} 18 a diophantine set.#

Proof. By the Theorem:

y ety > @u, v, D2 - P =18y =302+ wH],

4. A DIOPHANTINE SET OF EXPONENTIAL GROWTH

We begin by deriving some inequalities which show that y, srows

exponentially with =n.

*This simple calculation was sugges’‘ed by Oliver Gross.
¥see Chapter 7 of [1].
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Lemma 17, Ypsr ™ an + Byn .

~

Proof. ot e Y7 - (xn t ¥, Y7)(8 + 3 /T), which gives the
result.

Lemma 18. For n = I, 8y,, © Yppy © 16yn .

Proof. Use Lemmas 3 and 17.

Lemma 19, Forn 2 1, 3 » 871-'1 <y, s 3 - 145>n_l

Proof. Follows by induction from Lemma 18.

We shall write GPT(m) for the largest power of 2 which divides
m; €.g., GFT(5) = 1, GPT(12) = 4,

Lemma 20. a 2 GPT(D) is a diophantine predicate.

Proof.

a 2 GPT(b) =+ (Jx, y)Ib = yQRx + 1) &a 2yl .
In what follows we write

olm, n) «— (F2)[n22"6n>166& = Y x) .

2
Lemma 21. For each k > 0, there are m, n such that o(m, n) and
m > nk.

Proof. Given k > 0, choose N such that r > N implies Sr-l > rk.

Let n be any power of 2 greater than both N and 16 and let m = Yy

Then, p(n, m) is true, and

mn =y

23 . en—l

Lemma 22. p(m, n) implies m < ',

Proof. p(m, n) implies

!




~10~

- n‘u--,'u_-. J e 2

mo UZI
=¥,
<3 e 16!
&
since n > 16, §
Finally, we note the relationship: :
Lemma 23. '
p(m, n)ye—s me {yzx} & n/8 2 GPT(m) & n > 16 ,
i Proof. By Lemmas 4 and 7, GPT(y x) = 2x+3.
i Theorem 3. H implies that therezia a diophantine predicate
| p(m, n) such that
1. For each k > 0, there are m, n such that p(m, n) and m > nk;
2. p(m, n) implieg m < ",
Proof. This follows at once from the Corollary to Theorem 2,
together with Lemmas 21, 22, and 23, 3
)

Corollary. H implies that every recursively enwmerable set is
diophantine, and therefore (hat Hilbert's tenth vroblem i8 unsolvable.
Proof. For, our Theorem 3 yields precisely the well-known con-

ditions of Julia Robinson fll].+

[ PP YN

5. SOME NUMERICAL CALCULATIONS

Let us first note:

+In particular see [3], p. 430, Corollary 3.
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Lemma 24, H ie¢ equivalent to the assertion that /3 ia

Y2i4l
neper representable,

Proof. Immediate from Thesrem 2 and Lemma 15.

The numbers Ynpgy BTOV much too rapidly for direct computation
to be feasible, Qur procedure was to note that the factors T, +

7(yk/3), £, + 3y, 0 /3 both satisfy the same second-order

o

difference equation (Sﬁ = 16 ¢« U

2 bl T dn) already emploved., Hence,

we used JOSS to generate these factors mod ; for various primes p to
check for the presence of poison prime factors. CQur calculations
showed that ym/l {g not representalle for all oll m < 69, For y7x/3.

JOSS was used to find the factorization

Lo + 3y35 = 569 ¢« 12497 ¢« 14767 « 1234._ 3109540897423342896942089,

35

No factors were found for

Tag + 7(935/3) - 11429907853096713743899]43]6797599035684321.$

3

None of the primes 569, 12497, 14767 are poison. However, John
Selfridge* has reported a computation on an IBM 7090 at UCLA showing
that both of the large remalning factors are corroc’te. However, he

reports that the smaller of these has no factor « % 109, and the

larger no factor < 3 - 106.

“The decimal representations of the two very large numbers listed
were found by Joel Spencer, using JUSS,

*Oral communication,

L
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